Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Angelika Krumina

Angelika Krumina

Riga Stradins University, Latvia

Title: Molecular Genetic Characteristics Patients with Borrelia burgdorferi Infection

Biography

Biography: Angelika Krumina

Abstract

The MHC II genes encode the polymorphic-DR and DQ molecules, Lyme disease (Lyme borreliosis) is infectious vector-borne diseases which has a large polymorphism of clinical manifestations and caused at least three species of bacteria of the genus Borrelia: Borrelia burgdorferi sensu stricto dominated as the causative agent of Lyme disease in the United States, whereas Borrelia afzelii and Borrelia garinii in Latvia and Europe. One of the major unsolved problems of today is the study of the interactions of organism and pathogens genospecies Borrelia burgdorferi (Bb). In this connection particular interest is the analysis of one of the major systems of the body controlled by the immune response-complex HLA including the identification of possible associations of HLA genotypes with clinical features of Lyme disease. Although various factors participate in the immune response to infection (e.g., intensity of the infection and T-cell functioning), the interaction of these mechanisms with genetic factors seems to be important in determining the evolution of the disease. Furthermore, the immune response to infections varies from one individual to another, on account of the polymorphism of the genes that influence this response. HLA antigens may act alone or in combination with other genes, conferring susceptibility to, or protection against infectious diseases. The obtained results suggest that the inflammatory events of the sub acute arthritis can set the stage for development of chronic disease in individuals possessing an risk haplotypes. In particular, the haplotypes HLA-DRB1*15:01:01/DQA1*01:02:01/DQB1*03:02:01, (OR=8.34; p<0.013); -DRB1*01:01:01/DQA1*03:01:01/DQB1*03:02:01, (OR=6.17; p<0.027) and -DRB1*03:01:01/DQA1*01:01:01/DQB1*05:01:01, (OR=2.66; p<0.032) contributes definitely to a genetic predisposition to Borrelia burgdorferi infection in Latvian population which may have implications in our understanding of pathogenesis of this disease. Knowledge of the mechanisms of genetic protection against and susceptibility to infectious diseases is one of the important steps towards controlling them in endemic areas and contributes to our understanding of both the pathogenic and protective mechanisms of these processes. The mechanisms of immune response to infection that are influenced by the HLA genes may be the key to future vaccines using the peptides of organisms that mimic the HLA antigens.