Immunogenicity of a trivalent subunit vaccine for genital herpes in Rhesus macaques.

Sita Awasthi, PhD
World Congress on Virology, 2015
Atlanta, December 7-9
Global prevalence of HSV-2 Infection

Looker KJ. Plos One Jan. 2015
Rationale for HSV-2 vaccine

- Prevention of genital herpes
 15% of adult population is infected with HSV-2 worldwide
 20 million new infections are added each year globally
- Treatment of genital herpes
 In US ~50 million people are HSV-2 positive
 Economic burden of treatment is ~billion dollars annually in US
- Curb acquisition and transmission of HIV
- There is no cure or FDA approved vaccine
Rationale for a trivalent genital herpes vaccine

Entry protein

Inhibits complement

IgG Fc Receptor
Glycoprotein C protects virus against human complement

Glycoprotein E protects virus from IgG Fc mediated ADCC and C’activation

WT virus: Antibody bipolar bridging

HSV-2 gE mutant: No antibody bridging

gC2/gD2/gE2 as a prophylactic vaccine

Goal: Elimination of acute and recurrent disease, and asymptomatic shedding of HSV-2 DNA in pre-clinical model.

0-acute
0-recurrent
0-shedding of HSV-2 DNA
High ELISA titers to all immunogens and neutralizing titers to HSV-2
gC2/gD2/gE2 as a prophylactic vaccine

Table. Recurrent disease

<table>
<thead>
<tr>
<th></th>
<th>Mock</th>
<th>gD2</th>
<th>gC2/gD2/gE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of recurrent genital disease</td>
<td>7/8 (88%)§</td>
<td>16/25 (64%)**</td>
<td>10/36 (28%)**</td>
</tr>
<tr>
<td>Days with lesions/total observation days (15-60)</td>
<td>85/340 (25%)¶</td>
<td>77/1087 (7%)***</td>
<td>16/1509 (1%)***</td>
</tr>
</tbody>
</table>

Results: Trivalent vaccine highly protective against recurrent disease.
HSV-2 DNA and infectious virus from vaginal swabs

Day 28 to Day 48

GP 1

gD2

GP 9

Trivalent

GP 1

GP 9

No HSV DNA

151-1000

10^3 - 10^5

$\geq 10^5$ HSV-2 DNA

$\geq 10^5$ DNA and Infectious HSV-2
Summary of efficacy studies in guinea pigs

Acute and recurrent disease: Trivalent vaccine is very effective at preventing acute and recurrent genital disease and comes close to meeting 0 acute – 0 recurrent disease goals.

Asymptomatic DNA shedding: Trivalent vaccine reduced vaginal HSV-2 DNA shedding, but did not eliminate it. However, no infectious HSV-2 was recovered from vaginal swab during recurrent phase in trivalent vaccinated guinea pigs.
Translational efforts: Immunogenicity in rhesus macaques

Collaboration with Tulane National Primate Center

Immunizations and assessments

Groups
Mock (CpG and alum) n=2
gC2 (CpG and alum) n=2
gD2/gC2/gE2 (CpG and alum) n=2

Immunogenicity Endpoints
ELISA antibody titers for each antigens, mucosal antibody titers, neutralization titers, cellular immune responses, C3b blocking ability, Fc receptor blocking ability.
Plasma antibody and neutralization titers in vaccinated rhesus macaques

<table>
<thead>
<tr>
<th>Rhesus #</th>
<th>Treatment</th>
<th>ELISA titers</th>
<th>Neutralization titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gD</td>
<td>gC</td>
</tr>
<tr>
<td>1</td>
<td>CpG/alum</td>
<td><1:50</td>
<td><1:50</td>
</tr>
<tr>
<td>2</td>
<td>CpG/alum</td>
<td><1:50</td>
<td><1:50</td>
</tr>
<tr>
<td>3</td>
<td>gC2-CpG/alum</td>
<td>NA</td>
<td>1:32000</td>
</tr>
<tr>
<td>4</td>
<td>gC2-CpG/alum</td>
<td>NA</td>
<td>1:32000</td>
</tr>
<tr>
<td>5</td>
<td>Trivalent vaccine</td>
<td>1:32000</td>
<td>1:32000</td>
</tr>
<tr>
<td>6</td>
<td>Trivalent vaccine</td>
<td>1:16000</td>
<td>1:32000</td>
</tr>
</tbody>
</table>
ELISA and neutralization titers in vaginal mucosa

<table>
<thead>
<tr>
<th>Rhesus #</th>
<th>Treatment</th>
<th>Mucosal IgG (ELISA Ab titers)</th>
<th>Mucosal Neutralization titers HSV-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gD</td>
<td>gC</td>
</tr>
<tr>
<td>1</td>
<td>CpG/alum</td>
<td><1:25</td>
<td><1:25</td>
</tr>
<tr>
<td>2</td>
<td>CpG/alum</td>
<td><1:25</td>
<td><1:25</td>
</tr>
<tr>
<td>3</td>
<td>gC2-CpG/alum</td>
<td>NA</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>gC2-CpG/alum</td>
<td>NA</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>Trivalent vaccine</td>
<td>1:400</td>
<td>1:200</td>
</tr>
<tr>
<td>6</td>
<td>Trivalent vaccine</td>
<td>1:6400</td>
<td>1:1600</td>
</tr>
</tbody>
</table>
Blocking of gE binding to the Fc end of human IgG by vaccinated rhesus IgG

- Plate was coated with human IgG from an HSV-1/2 negative donor
- gE2 was incubated with rhesus IgG (0 or 200ng/µl) at 37°C for 1h then added to IgG-coated wells
- Bound gE was detected with polyclonal rabbit anti-gE2 Ab
- * P<0.001

Blocking of gE2 binding to IgG Fc will enhance neutralizing ability of gD2 antibody
Blocking of gC2 binding to C3b by vaccinated rhesus IgG

- Plate was coated with C3b
- gC2 was incubated with rhesus IgG (3rd bleed) at 37°C for 1 h then added to C3b-coated wells
- Bound gC was detected with polyclonal rabbit anti-gC2 Ab

Antibodies that block gC2 binding to C3b will enhance neutralizing ability of gD2 antibody
Cellular immune response in gC2-immunized Rhesus macaques

- PBMCs were isolated following pre and post-immunizations.
- Cells were stimulated with a pool of overlapping peptides (gC2).
- IFNγ positive CD4 and CD8 cell were measured by surface and intracellular staining, followed by FACS analysis.

gC2 immunized rhesus PBMC had increased IFNγ positive CD4 and CD8 T cells when stimulated with gC2 peptide pool.
Vaccine specific CD4+ T cell responses in rhesus

- PBMCs were isolated following pre and post-immunizations.
- Cells were stimulated with purified gC2, gD2 or gE2.
- IL-2, TNF-α, and IFNγ positive CD4+ cell were measured by surface and intracellular staining, followed by FACS analysis.

Immunogen specific CD4+ T cell responses are induced in vaccinated rhesus.
Summary

• Trivalent vaccine is highly effective in eliminating primary and recurrent disease in guinea pigs.
• High level ELISA titers to gD, gC and gE are detected.
• High level of neutralizing antibody titers are noted in plasma followed by trivalent vaccine immunization.
• Vaccine specific mucosal IgG are detected in rhesus vagina.
• C3b blocking and FcR blocking antibodies are produced in vaccinated rhesus.
• CD4 and CD8 T cell responses are induced in vaccinated rhesus.

Conclusions

A trivalent vaccine that blocks evasion of host immunity is a promising candidate from future human trials.
Acknowledgments

University of Pennsylvania
Harvey Friedman
Carolyn Shaw
Lauren Hook

National Primate Center Tulane
Ron Veazey
Megan Gardner
Bapi Pahar

Reagents: Gary Cohen, Roselyn Eisenberg, Stuart Isaacs
GSK

Funding: NIH, Merck (2007-09), CFAR
CD4+ T cell responses

Media Control gC2 gE2 SEB

Animal IH34
Sample date
4/22/2014